
Interface Definition

Guidelines and Recommendations

Author:
Radovan Semančík

Date:
January 2010

Version:
1.0

Abstract:
This document provides guidelines and recommendations for
interface definitions. It describes how the interface definitions should
be formed, what usually needs to be included, how to create good
definition and what to avoid. It provides some examples in Java
programming language for illustration.

nLight, s.r.o.

Vendelínska 109

Lozorno, Slovakia

www.nLight.eu

Table of Contents
1 Interface Definition Guidelines...1

1.1 Names...1
1.2 Contract...2
1.3 Operations...3
1.4 Concurrency and Synchronism..3
1.5 Atomicity, Transactions and Consistency..4
1.6 Limitations..5
1.7 Error Conditions...6
1.8 Dependencies..7
1.9 Preconditions...8
1.10 Form..8
1.11 Notes...11

2 Interface Definition Checklist...12
3 Copyright...13

i

Interface Definition

1 Interface Definition Guidelines

Surprisingly not many people can work well with abstractions. It probably needs a special kind of thinking,
somehow twisted mind, to be able to do it well. However, abstractions are the daily bread for software
architects and designers, it is the air we breathe and the water we drink. You may expect that only one or
two members of project team can naturally think abstractly, but the rest of the team will be quite lost.
Therefore I find it very helpful to provide some guidelines how to define abstractions. These will help people
that are not natural abstract thinkers to create and maintain a reasonably good interface definition.

Interfaces are everywhere in well-designed system. Interfaces are formed from abstract classes and other
abstractions that programming languages provide. Interfaces are formed from network protocol messages,
signals, file formats, XML tags and other means. No matter what is the actual mechanics of the interface,
some aspects are always the same. These aspects are summarized in following guidelines. Please note that
these are guidelines, not rules and definitely not a dogma. Feel free to adopt as much or as little of these as
you find suitable. Also, these guidelines describe interface definition, not interface design. Interface design
is a separate, much more difficult, much less mechanical and often very intuitive activity.

1.1 Names
Names are extremely important in the project. That applies to concepts, component names and especially to
interface names. Interfaces should be abstract, should survive for a long time. However it must be expected
that interfaces will change, albeit slowly. However the names, once they spread through the project team,
are even more difficult to change. Therefore the name should at least a bit more abstract that the interface
itself. The designers and programmers will deal with many interfaces during their day-to-day work, interfaces
that were designed by other people, interfaces that use concepts that may be not well know to the one using
the interface. Therefore name should also provide an information of interface purpose at the first sight. This
helps a lot to maintain understandability of the project.

Names in the interface definition should be unambiguous and precise. Do not shorten the names too much,
try to be descriptive in interface naming. Also do not make the names too long or people will use acronym
instead of the full name. If you cannot avoid using a long name, spend some time to figure out a name that
makes nice, pronounceable acronym. Ideally the acronym should form a word that is close to the purpose of
the interface. Also note that it may be lesser evil to use unusual names for components and interfaces
instead of heavily overloaded names. Therefore it may be better to name interface “EvilEye Network
Protocol” than to use “Management Network Protocol” which is too generic.

If your system consists of several platforms or languages, consider using a convention for interface names.
For example use “Java API” suffix for consumer-oriented interface in Java, “C SPI” for provider-oriented
interface in C programming language, “XML Schema” for XSD-based data format definition, etc.

Following table provides good examples of interface names:

Name Description

Reactive Rule Engine Java API Client-oriented interface (Application Programming Interface, API) in
Java language for rule engine that is designed to react to generic
events.

Environmental Sensor Driver C SPI Provider-oriented interface (Service Provider Interface, SPI) in C
programming language that allows to plug-in drivers for various
environmental sensors.

EvilEye Network Protocol Network protocol definition describing a simple network management
protocol for monitoring system components.

Photo Description XML Schema Definition of XML dialect designed to describe a photograph,
containing textual description, identification of author, copyright,
technical meta-data, etc.

Following table provides bad examples of interface names:

1

Interface Definition

Name Why is it bad? Recommendation

Management
Network Protocol

The name is too generic. “Management” is
heavyly overloaded term. The protocol could
manage the network components, it may be
system administration protocol or even a
protocol to automate team management. The
audience will easily make false assumptions
about such interface.

Use something less generic, such
as “System Component
Management Network Protocol”. If
that is too generic as well, you
may bet on exotic names such as
“EvilEye Protocol”.

FXCTLNC API Unless “FXCTLNC” is a well-established
acronym in the project, such interface name will
not provide any information to the audience. It is
also difficult to remember and could be easily
confused with FXCTTNC and FXTTLCN
acronyms that may happen to be used in the
project.

If you must use acronyms, try to
make the acronym shorter. If
possible make the acronym
pronounceable, ideally something
that forms a word close to the
interface purpose. E.g. “WANG”,
“XTREM” or “GLUE”.

Simple Pattern-
Based Sequential
Event-Processing
Module for Perl

Interface name contains too much
implementation concepts. The name should be
more abstract than the interface itself.

Better names include “Reactive
Rule Engine Perl Interface”,
“Event-processing Rule Engine for
Perl” or even “eRule for Perl” for
short.

Also make sure you provide a separate namespace for you interface definition. Interfaces are often globally
visible and it is important to avoid naming conflicts. The dedicated namespace may mean to reserve a
dedicated package name for each interface (Java, Perl, …) or a unique prefix for macros, data structures
and functions (C), creating a dedicated URL (XML, WSDL, …), allocating an object identifier (LDAP, SNMP,
…), etc. Most practical platforms have a mechanism for namespace allocation. The best results are
achieved if you establish a project-wide convention how to allocate and use namespaces for each platform
and apply these conventions to interfaces as well.

1.2 Contract
Interface definitions must describe interface contract, not the implementation. This is the most important
guideline of all. The definition should abstract from all implementation detail that it could. Think about the
most bizarre implementation of the interface. The interface definition must be able to work even for the
craziest practical implementation.

What you are describing is contract between the users and providers of the interface. You should abstract
most of the implementation details and describe only the boundary between the two parties. Try to think
ahead and only promise what you can keep in a subsequent revisions of the interface.

GOOD: Content of the object will be kept synchronized with the underlying storage.

BAD: Content of the object will be refreshed if the file /foo/bar.db is modified. Modifications
to the object will be immediately flushed to the /foo/bar.db file.

Bad example above is too specific, mentioning a file name of the database. The implementations may store
the data only in memory or may use remote database. The bad example is also promising too much
regarding immediate detection and flushing of changes. This may work well for a first release, but later you
may find that you need to improve system performance. The promise of immediate synchronization will not
allow you to add efficient caching to the implementation unless you change in interface definition. Good
example allows reasonable degree of freedom to the implementation while still being good enough a
definition for interface users.

For important constructs of the interface (such as classes) always try to define a responsibility of a
construct. Document the reason for existence of such construct and what a user can gain from using it. Also
describe relations between other major constructs of the interface.

2

Interface Definition

GOOD:

/**
 * Representation of bank account.
* <p>
* The interface provides access to high-level operations on
* checking account such as withdrawal, deposit and transfer
* between accounts.
* <p>
* ...
* @see CheckingAccount
*/

interface BankAccount { ... }
BAD:

/**
 * Representation of bank account.
*/

interface BankAccount { ... }

1.3 Operations
Describe operations, parameters, return values, messages, protocol data units or any other mechanics
of the interface. Describe both syntax and semantics of the parameters. Define and describe data types and
data formats. This is quite easy for local interfaces in modern programming languages, but it may be difficult
for remote, multi-platform messaging interfaces. Do not forget to describe file formats and formats for binary
or stream-based arguments. Especially take care when the argument is in generic format, such as XML.
Appropriate schema should always be part of the interface.

GOOD:

/**
 *
* Returns value of a property.
* <p>
* Returns value of an component's property defined by
* the <code>name</code> parameter. The method will return
* value of the property (as String) if the property exists
* or null otherwise.
*
* @param name property name. Must not be null.
* @return value of the property. May return null.
*/

public String readProperty(String name);
BAD:

public String readProperty(String name);
It is obvious what's wrong with the bad example. There is no description (no contract), the parameter is not
defined and return value is not defined (except for type definitions, but that is not enough).

1.4 Concurrency and Synchronism
Describe concurrency and synchronism properties of the interface. Clearly state whether the operations
can be invoked from multiple processes or threads, if more that one operation can be in progress, if they can
share a resource and so on. Describe whether you interface is synchronous or asynchronous. Synchronous
operations are waiting for the operation to complete. They are easier to use for non-realtime clients.

3

Interface Definition

However they are difficult to use correctly in low-level code or real-time systems. Asynchronous interfaces
just initiate operation and return immediately, the result of the operation will be delivered when it is
completed, usually by a callback mechanism. They allow complex handling of events, especially in low-level
code and real-time systems, however they are difficult to use correctly. Message-oriented interfaces are
always asynchronous and the message sequencing may be complex. Add description of interaction
sequences, for example using UML sequence diagrams. If the interface is a complex network protocol, it
may also require description of states and state transitions of communication parties.

GOOD:

/**
 *
* Sets value of a property.
* <p>
* Sets value of an component's property defined by
* the <code>name</code> parameter to a new value defined
* by the <code>value</code> parameter.
* <p>
* This method is synchronous. It will block until the property
* value is stored in the backing storage.
* <p>
* This method is thread-safe, it may be concurrently called
* from several threads and the consistency of the operation
* will hold. However, there is no versioning or locking
* support. In case of conflicting updates only one of the
* values will be set in the property and it cannot be
* determined which one it will be.
*
* @param name property name. Must not be null.
* @param value new property value. Must not be null.
*/

public void writeProperty(String name, String value);
BAD:

public void writeProperty(String name, String value);
Please note that the good example also mentions limitations, such as a possibility that the call will block or
the weak consistency guarantee of the method.

1.5 Atomicity, Transactions and Consistency
Describe atomicity, transaction and consistency guarantees. Describe whether the operations change
data and state atomically and whether the failure of operation can leave data in half-updated state. Describe
any promises of the interface regarding transactional behavior, especially if it is expected that the interface
will be invoked in a context of a transaction. Describe consistency guarantees, especially for remote
interfaces. Describe interface promises about maintaining any reservations, temporary locks or any other
mechanism that is used for consistency.

GOOD:

/**
 * Representation of bank account.
* <p>
* The interface provides ...
* <p>
* Every operation on the back account is expected to be
* atomic, maintaining bank account consistency. For that

4

Interface Definition

* reason it is required that all the methods of this
* interface must be invoked in a context of an existing
* (JTA) transaction, unless explicitly stated otherwise in
* method description.
* ...
*/

interface BankAccount { ...
 /**
 * ...
 * Precondition: Existing (JTA) transaction
 */
 void transferTo(BankAccount target,Amount amount);
 ...
}
BAD:

/**
 * Representation of bank account.
* <p>
* The interface provides ...
* <p>
* Operations on the back account are atomic.

 */
interface BankAccount { ... }

The bad example is too vague in a way how atomicity is supposed to be provided. Such definition may imply
that the atomicity is provided by the implementation without any requirement from the user (which is seldom
the case). Good example above makes the requirement clear.

1.6 Limitations
Describe limitations and undefined behavior. Include all the limitations you can think of. The clients
should not rely on anything that is not defined in the interface. But make the situation easier for them by
mentioning the dangers explicitly. Define the limitations, which means cases where it is known that the
interface will fail. Also warn about undefined behavior, which means situation where it may work or may not.
Problems that originate from limitations and undefined behavior are difficult to diagnose, therefore make sure
that the client is aware of them and can avoid them. No interface is perfect and (because all abstractions are
leaky) all the interfaces are somehow limited. Be suspicious about interface definitions that do not document
limitations.

GOOD: The resize method changes the size of the file to a new absolute value. If the file
is already filled with data beyond the new absolute size, the behavior of the method is
undefined. It may produce an error or it may silently proceed creating unexpected results.

Good definition provides a warning that the behavior is undefined and that unexpected things may happen.
This leaves a degree of freedom for implementations that may not be able to maintain a record of how much
data was actually written and therefore cannot detect illegal resize and cannot raise an error.

BAD: The resize method changes the size of the file to a new absolute value. The file
must not be filled with data beyond the new absolute size.

Such definition is bad because it does not describe what happens if someone actually tries to resize the file
filled with data beyond the new absolute size. The user of the interface could (wrongly) assume that the
resize method will raise an error in such situation.

BAD: The resize method changes the size of the file to a new absolute value. If the file is
already filled with data beyond the new absolute size an InvalidArgumentException is
thrown.

5

Interface Definition

This definition promises too much. Current implementation may be able to detect that the user is trying to
resize an object while it is filled with data beyond the new absolute size. But if you would need to provide
alternative implementation (e.g. mock implementation that works on plain files instead of strongly managed
data objects), such an implementation may not have the ability to detect that the file is filled with data beyond
the new absolute size and it cannot raise an error in such a situation. That would mean that you will not be
able to keep the interface contract and you will be forced to change the method definition.

1.7 Error Conditions
Describe error conditions and exceptional states. Error indicators, such as error codes and exceptions,
are integral part of interface definition. Make sure that the error conditions are well-described. Error
indicators should contain both human-readable message and computer-readable error code.

An operation/sequence of operations triggered by the interface must not drive the system into an
inconsistent state, no matter how ridiculous or incorrect the input parameters or operation sequence were.
Possible input parameter/operation sequence inconsistencies should be signaled by error indicators
(exceptions, error codes). Generic, catch-all error indicators meaning “Generic error”, "An error occurred" or
"There was an exception" must not be the only error indicators in the interface. The messages that
accompany error indicators should state where and why an error occurred and provide details necessary to
quickly track a possible bug. The user should not be expected to wade through several megabytes of system
log and examine hundreds of lines of stack trace including a dozen exceptions wrapped inside each other.

GOOD:

/**
* Returns value of a property.
* <p>
* Returns value of an component's property defined by
* the <code>name</code> parameter.
*
* @param name property name. Must not be null.
* @return value of the property. Cannot return null.
* @throws NoSuchPropertyException
* if the property does not exist
* @throws IllegalArgumentException
* if a parameter is null

 */
public String readProperty(String name)

throws NoSuchPropertyException;

/**
 * Exception indicating missing property.
 * <p>
 * This exception indicates an attempt to work with a
 * property that does not exist.
 */
public class NoSuchPropertyException { ...}

BAD:

/**
 * Returns value of a property.
 * <p>
 * Returns value of an component's property defined by
 * the <code>name</code> parameter.
 */

6

Interface Definition

public String readProperty(String name);
The bad example does not provide any definition of error conditions, therefore the used might assume that it
cannot fail. However it is very unlikely that the code will work properly if the requested property does not
exist or if the parameter is null. Good example above provides a better description. The error condition is
described both in the method javadoc (specific error for the method) and in javadoc for exception class
(generic description of the error class). The exception class takes place of computer understandable error
code as it may be used in try-catch blocks. Please also note the description of
IllegalArgumentException in @throws javadoc tag. IllegalArgumentException is a runtime
exception and it is not included in the method's throws clause. However it is good to describe that such
exception can be thrown from the method in the javadoc. Such approach will ease debugging and improve
system understandability.

BAD:

/**
* Returns value of a property.
* <p>
* Returns value of an component's property defined by
* the <code>name</code> parameter.
*
* @param name property name. Must not be null.
* @return value of the property. Cannot return null.
* @throws PropertyOperationException
* in case of any error

public String readProperty(String name);

public class PropertyOperationException
extends RuntimeException { …}

The above example does define an error condition, however the error condition is way too generic. It
provides no indication of what is the problem, therefore the use of such interface has no chance to react to
the situation. There is no textual description for PropertyOperationException, most likely because
there is not much to write about. Also the PropertyOperationException is a runtime exception,
therefore the compiler will not warn that the exception is not checked. This will cause that the exception will
probably not be checked at all and even trivial recoverable errors will propagate up the call stack and cause
a critical failure of the entire system.

1.8 Dependencies
Describe dependencies of the interface. Interfaces may depend on other concepts, usually data type and
formats, industry specifications and standards. Describe all the concepts that the interface depends on. The
interface should be reviewed and maybe even updated once these concepts change. Make sure that you
are describing dependencies of the interface, not dependencies of implementation.

GOOD:

/**
* Manager of persona representations.
* <p>
* Implementations of this interface manage personas
* in local storage as well as provide access to remote
* persona representations. ...
* <p>
* Remote personas are located using URLs. The URLs must be
* resolvable for the implementation to operate properly,
* therefore only ”concrete” types of URLs will work.

7

Interface Definition

* Implementations of this interface depend on the URL
* resolution code provided by the <code>URL</code> class.
*
* @see URL

 */
interface PersonaManager { ... }

BAD:

/**
* Manager of persona representations.
* <p>
* Implementations of this interface manage personas
* in local storage as well as provide access to remote
* persona representations. ...

 */
interface PersonaManager { ... }

The bad example does not mention URL as one of the basic concepts used by the interface (assuming URL
class is not defined in this interface). At least a simple paragraph and a javadoc @see tag should be used to
indicate that this interface has a dependency on a concept from other interface.

1.9 Preconditions
Describe preconditions, the conditions that needs to be satisfied before the interface can be used. If some
object should be acquired, the implementation should be initialized, specific configuration is needed or
system must be in a specific state document all of that in the interface definition.

GOOD:

/**
* Returns next token from a token stream.
* <p>
* ...
* <p>
* Precondition: The stream must be open.

 */
public String getNextToken(TokenStream stream);

1.10 Form
You should define a convention for a uniform form of interface definition in the entire project. The convention
should more-or-less hold for all types of interfaces used in the system, regardless whether these are local
Java APIs or network protocols. The uniform way of defining interface is good for understandability and
efficiency. Architect, designer and programmer could evaluate the purpose and state of interface definition
almost at a first glance.

Inspire yourself by the way how standard documents and RFCs (IETF Requests for Comments) are written.
Especially if your interface definition is about to be used outside your team, outside your company or even
released to public. The strictness of interface definition form should be proportional to importance of the
interface. Intra-component interfaces could be allowed to be defined very informally, while interfaces
between subsystem or public interfaces of your system should have a strict requirements for definition
quality and completeness.

The best results are achieved if a native tool is used for the target platform. For example using a tool for
structured documentation inside the code (javadoc, doxygen) will significantly improve interface definition
quality. Firstly, the programmers like to look at the code instead of reading through the documents. If the
documentation is in the code, it has a higher probability of catching programmer's eye. Secondly, if the

8

Interface Definition

documentation is bundled with the code and the code is modified, it is natural to modify the documentation
right away. Therefore it is likely that the textual definition and the code will be kept consistent. If the
documentation is separated from the code, the one that updates the interface frequently forgets to update
the documentation as well.

Each interface should have short page, document, file or a section in the source code comments that defines
few basic facts about the interface. We will call this section an interface definition header. The header
should contain following information:

• Name: Name of the interface. Should be a full name, not an acronym.

• Responsible person: Name of the person who is responsible for interface
maintenance. The person who should be contacted if a problem with the interface is
discovered or when an explanation is needed. The person that coordinates the
updates of the interface.

• Version: Interface version, last revision from source code control system, product
version that this interface is a part of or date of last interface modification. This is a
good tool to evaluate the freshness of interface definition. Interface definitions have a
tendency to diverge from the code and version numbers are one of the mechanisms
that to judge how accurate the definition is.

• Status: Whether interface is public, internal, accessible only inside subsystem,
inside component, whether it is experimental, ready for release, etc.

• Platform: Programming language or other definition of platform. Specifies if the
interface is local Java API, network protocol, message format for MOM system, XML
dialect, etc. Also include version of the platform if it is important or a language
dialect/extension if it is non-standard.

• Dependencies: Enumerate the interfaces that this interface depends on. For
example if this interface uses data types from other interface or it relies on a concept
that is defined elsewhere. Please be careful to describe only the dependencies of
interface, not the dependencies of implementations. Obvious dependencies (e.g.
Java core libraries) are usually not mentioned.

• Description: Few lines that describe the purpose of the interface, it's reason for
existence in the system. It may also describe basic idea, but the description should
not be longer than a dozen sentences.

• History: Short history of major interface revisions. Description of dates and the most
important changes. Just one sentence for each history entry.

You may also want to add following entries to interface definition header, however if you do make them
optional. Too much data in the header usually means too much data that can be out of sync with reality.

• Pre-conditions: The conditions that must be satisfied for all interface
implementations to work. This may include a need to initialize a subsystem, for a
system to be on-line, requirement to invoke another interface before this interface
can be used, etc. However, avoid describing pre-conditions of a specific interface
implementation. The preconditions specified here should be a generic preconditions
that apply to all interface implementations as a direct consequence of the interface
design.

• Post-conditions: Conditions that will be satisfied after invocation of interface
operations. These may be very useful for testing of interface implementations.

• Concurrency: Define the concurrency, atomicity, consistency, transactional or other
interface limitations. For example specify whether the interface is thread-safe or not,
if the operations can take part in transactions, etc. Be careful to describe the
requirements of the interface, not implementations. This field should specify
requirements for all implementations (e.g. thread-safety) or direct consequences of
interface design (e.g. operations assume that a transaction exists before invoking
any operation).

9

Interface Definition

• Idempotence: Describe the state management properties and side effects of the
interface. Does two invocations of the interface influence each other (not idempotent)
or are independent (idempotent). Is there any difference if an operation is invoked
once or many times? Does network conditions or a state of a remote node influence
the result of interface operations?

• Persistence: Describe how long the effects of interface invocations persist. Do the
effects disappear at the time the operation is finished? Or do the effects persist until
the system is restarted? Are the results saved to a disk system and remains there for
weeks? Or years?

• Security: What are the security properties of interface? Is is sensitive remote
interface that needs establishment of keys and certificates to operate properly? Or is
it a local interface that assumes interaction in a trusted environment?

In all the header be careful not to describe the properties of implementation, but only properties of the
interface. Each field should specify requirements for all implementations (e.g. thread-safety, ability to keep
state across system restarts) or direct consequences of interface design (e.g. interface designed to work
with disk drives can assume long-term persistence).

Following table provides an example of interface definition header:

Name System Configuration Java API

Responsible Person Radovan Semančík

Version 1.1

Status Public

Platform Java SE 5

Dependencies FooBar Common Classes for Java

Description Provides easy-to-use access to system configuration. May be used by
management tools to read and modify system configuration and to monitor
system state.

History 1.1, September 2008: Minor bugfixes and adjustments

1.0, May 2008: Initial release

Pre-conditions System started up to milestone CONFIG (may not be fully initialized yet)

Concurrency Thread-safe

Idempotence Idempotent except for configuration changes

Persistence Configuration changes survive system restart

Security No security, trusted environment assumed

Following table provides recommended interface definition form for some platforms:

Platform or
Language

Form

Java Provide interface definition in a form of Java source package. It should only contain
interface, abstract class and final class constructs if possible. Each file
should be well documented using javadoc. The class or interface should provide
introductory text in javadoc in front of opening definition and then specific javadoc section
in front of each method or field. The javadoc text should document the interface contract,
including all limitations that cannot be expressed in Java code (e.g. whether the values for
parameters and return statements can be null or cannot).

C Provide interface definition in a form of C header file or several header files. The files
should contain data structure, macro and function definitions, each of them well
documented using doxygen-style comments.

10

Interface Definition

SOAP Provide complete and valid WSDL document including all necessary XML Schema types
definitions. Use XML comments or appropriate documentation XML tags to describe the
interface contract. Document especially the WSDL operations, but do not forget to
document usual XML constructs as well (see XML below).

XML Provide XML Schema Definition (XSD) file for the XML dialect. Use XML comments or
appropriate documentation tages in XSD to document the structures. The XML Schema
type definitions may et very complex, therefore document the meaning and purpose of
data types. Use text in comments to document limitations that cannot be expresses in
XML schema language.

Network
Protocol

Use semi-formal protocol specification similar to standards, RFCs or other normative
specifications. Define underlying protocol, protocol data units (PDUs), message
sequences and state machines of communicating parties. Do not forget to define errors,
timeouts and similar exceptional conditions. Sequence or timing diagrams showing the
communication are usually very useful.

Message
Exchange

For interfaces based on message exchange (MOM, IPC or similar) define the
communication channel and message formats using any mechanism appropriate for
communication channel. You usually do not need to specify underlying messaging
mechanism in details (it is abstracted away by messaging channel), but the rest is the
same as for the network protocol case.

1.11 Notes
Although this text describe interface definition and not interface design per se, there are is one design
guideline that is worth mentioning: keep interfaces minimal. The interface is not perfect when there is
nothing more to add. The interface is perfect when there is nothing more to remove. Every class, method,
function, attribute or any other construct needs a reason to exist. If the reason is not obvious at the first sight,
document the reason in the description. Try to provide only one way to do something. Do not try to provide
operations that does two things in one call unless there are very strong reasons to do so (e.g. atomicity).
And even if there is a very very good reason, document the reason and all the motivation in the interface
description.

Catalog interfaces in your system, especially public, inter-subsystem and inter-component interfaces.
Cataloging the interfaces gives you some idea how well is your system structured. Adding development
status to the catalog will create a kind of project dashboard that can be used to track the progress of system
design and re-design. The catalog will also allow junior architects and designers to quickly look for a
functionality that the system provides, to quickly find appropriate interfaces for new or modified components.
Adding live references to artifacts (files) that contain interface definition will significantly increase the value of
interface catalog.

Track endpoints where the interfaces are exposed. Endpoints are URLs where web services can be
accessed, network ports where daemons listen, RPC ports and names, references in a naming service,
class instance handles and names, instance identifiers used in dependency injection frameworks, etc.
Endpoints are not abstract. Endpoints represent specific implementation and therefore are not, strictly
speaking, part of interface definition. However, each endpoint implements particular interface, therefore
tracking endpoints, cataloging them and checking the development status of implementation behind them
will give you very good idea about the state of project development (implementation).

This text is not intended to be used as is. It is not a guideline for interface definition that can used in a
project in this very form. It is a rather to be used as inspiration to create your own interface definition
guidelines. In practical situation you may find that changing or ignoring some of the guidelines will improve
your results. Each project is different, therefore the guidelines has to adapt as well. Use this material with
case and apply common sense whenever possible.

Provided examples are not expected to be complete or absolutely correct. The demonstration of “good” and
“bad” may also not entirely fit into your project. Some project will find that what is recommended as “good” is
too much work and going with the “bad” example actually improves the result. Once again, use this
document only for inspiration, not as a dogma.

11

Interface Definition

2 Interface Definition Checklist

Is interface name appropriate?
Isn't it too short and generic or too long and difficult to remember?

If it is long, is the acronym easy to remember, pronounceable or even meaningful?

Does the name include platform, language or any other major limitations of the interface?

Does it has a dedicated namespace according to the project conventions?

Does the definition contain enough summary information (header)?
Have you specified name of a responsible person (author or maintainer)?

Have you specified interface version?

Have you specified interface status (public, internal, experimental, ...)?

Have you specified platform (including language version)?

Have you listed interface dependencies on other interfaces?

Have you included a short description (no more than few lines)?

Have you updated interface history record (if this is a major revision)?

Would it help to include any additional information (pre-conditions, post-conditions, concurrency,
Idempotence, persistence, security)?

Is there anything to remove?
Are there redundant classes in the interface? Classes that have similar responsibility or function?

Is there more than one way how to do something? Do we really need that?

If we need redundant constructs are the motives documented well enough?

Is interface definition precise enough?
Are the limitations documented? Is there a class or operation without any limitations?
(It is unlikely that there are no limitations, therefore it is likely that the limitations are just not documented.)

Are all the constructs defined (structs, macros, classes, interfaces, XML data types, …)?

Are all data types in operation parameters and return values defined or is appropriate reference to their
definition provided?

Are all error indicators (exceptions, error codes) well defined in the interface?

For all the operations, is there at least one error condition defined?
(It is unlikely that operation will always succeed, therefore it is likely that the error is just not documented.)

Be especially careful about time-outs and network errors. Does the definition account for these?

12

Interface Definition

3 Copyright

You may use the work in this document under the terms of Creative Commons Attribution (CC-BY) license.
In you derivative work clearly state that the work is derived from this work and use the following form of
author attribution at the very minimum:

Radovan Semančík, nLight.eu

Also please provide full reference (either URL or bibliography entry or both) when appropriate.

13

	1 Interface Definition Guidelines
	1.1 Names
	1.2 Contract
	1.3 Operations
	1.4 Concurrency and Synchronism
	1.5 Atomicity, Transactions and Consistency
	1.6 Limitations
	1.7 Error Conditions
	1.8 Dependencies
	1.9 Preconditions
	1.10 Form
	1.11 Notes

	2 Interface Definition Checklist
	3 Copyright

