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WARNING

Controversial statements ahead!
Political correctness (very) limited.
Mental health hazards.
Dogmatic buzzword followers should leave now.

HIC SUNT LEONES



  

Project midPoint
● Identity management and governance
● Open source (Apache License)

● Started in 2011 by Evolveum (self-funded)

● Approx. 1 million lines of code
● Mostly written in Java
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… and Identity Governance?

● Beyond Role-Based Access Control (RBAC)
● Organizational structure
● Delegation, Audit, etc.
● Role assignment and re-certification
● Policies (e.g. SoD)
● Maintenance of role model (role lifecycle)
● Risk assessment
● Compliance



  



  



  



  



  

MidPoint Development

● Everything is open source (see github)

● Evolutionary approach (iterative+incremental)

● At least 2 releases per year (26 releases)

● Team of 5 full-time developers (+contributors)

● High development activity (100-200 commits/month)



  

MidPoint Big Picture
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MidPoint Big Picture
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MidPoint Architecture



  

Components, Source Code Structure



  

Dependencies (2010-2012)

● Spring
● Java Server Faces
● XML (DOM)
● JAX-B
● JAX-WS
● ESB (BPEL)
● Activiti BPM (BPMN.2)
● Jasper Reports
● Hibernate



  

Dependencies (2018)

● Spring + Spring Boot
● Java Server Faces   Apache Wicket
● XML (DOM) + JSON + YAML
● JAX-B  : (almost) replaced
● JAX-WS  : not used much any more
● ESB (BPEL)   : replaced before midPoint started
● Activiti BPM (BPMN.2)  : going to be replaced
● Jasper Reports : not very useful, will it survive?
● Hibernate : may be replaced later on



  

Dependencies : Lessons Learned

● Faster start of the project
● Do not reinvent the wheel

… unless the wheel is in fact a square
● Do not depend on dependencies too much
● Understand how they work – and why they fail
● Have a “Plan B” to replace them later on



  

Architecture?

“REST”, Microservices, Web frameworks, …

                     That’s not architecture!



  

Architecture!

“REST”, Microservices, Web frameworks, …

                     That’s not architecture!

This is architecture

Components, subsystems, 
interfaces, modules,
separation of concerns

You really should pay attention in 
software engineering classes.



  

Data Model

● Extremely important
● As important as architecture
● Cross-cutting concern
● Performance, scalability, evolvability, …
● Changes often – especially at the beginning
● Evolution - compatibility
● Experimental features
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Data Model Change
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Data Model : Schema
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MidPoint : Prism Schema (now)
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MidPoint : Prism Schema (future)
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MidPoint : Prism Schema in UI

CUSTOM SCHEMA EXTENSION



  

XML, JSON, YAML and Friends
Prism Object : UserType

Parser / Serializer
Prism

Schema

name: foo
givenName: Foo
familyName: Bar
fullName: FooBar

{
    “name” : “foo”,
    ”givenName” : “Foo”,
    ”familyName” : “Bar”,
    ”fullName” : “Foo Bar”
}

<user>
    <name>foo</name>
    <givenName>Foo</gi
    <familyName>Bar</fa
    <fullName>Foo Bar</
</user>

Whatever data format
will become fashionable
next year



  

XML, JSON, YAML and Friends



  

Prism Deltas



  

Big Problem of Consistency
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Transactions / MVCC
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Transactions / MVCC

midPoint

Source 
systems Identity 

conncetors

Target 
systems

MidPoint
DB

YE
S

MVCC 
(maybe)

Limited

NO

What is a 
“transaction”
?

No  way!



  

“Relativistic” Consistency

● Deltas are usually relative (add, delete)
● Apply delta in any order => equivalent value
● We need unordered multi-values for that

… but ordering is seldom needed
● There are still some weak spots (e.g. replace)
● But conflicts are quite unlikely
● “Reconciliation” as safety net

Heureka! It works!



  

Prism : Much More

● Static schema (compile-time)
● Dynamic schema (run-time)
● “Superdynamic” schema
● Raw data

– We do not have complete schema at parse-time

● Deltas (schema-aware)
● Search filters (schema-aware, of course)
● Lifecycle (versioning, deprecated, experimental)



  

Questions You Surely Want To Ask

● Why XSD?
– Because midPoint started in 2011

– Because JSON Schema and others are equally bad

● Namespaces? QNames?
– Yes, we use them (even in JSON and YAML)

– No, we are not crazy (yet)

– End user (usually) does not need to deal with them

– QName == URI

– Benefits: extensibility, versioning



  

RESTful API

● “REST” part and RPC part (and some overlap)

● Full schema support: XML, JSON, YAML
● Big problem of REST: modifications

… but we do not worry, we have deltas
● SOAP to REST in five easy steps

http://…/rest/users/02c15378­c48b­11e7­b010­1ff8606bae23

http://…/rest/users

http://…/rest/tasks/c68d7770­...­9bec1fc3b57c/suspend

http://…/rest/notifyChange
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Testing
● Automated integration testing

– Thousands of test cases

– Still based on unit test framework (TestNG)

– Embed what you can (DB, LDAP server, ...)

● Not that much unit tests
– Are you crazy? Yes … I mean: No!

– Remember: code generated from schema + compiler

– Unit test maintenance is very expensive

● End-to-end tests – in progress
● Test-Driven Bugfixing (TDB)



  

Designed For (Integration) Testability



  

Rolling-Wave Approach
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Rolling-Wave Approach

● Rolling-wave planning: obvious and intuitive
● Rolling-wave approach applied to everything:

– architecture, schema, features, release scope

● Create architecture that can survive decades
– But do NOT implement everything

– Implement only what you need now

● Design 1-3 years ahead
– But do NOT implement what you don’t need now

– Data model (schema), DB model, interfaces

● Implement only what you need



  

Questions you wanted to ask at the 
beginning

● Java? Really?
– Really. And we use checked exceptions!

– But no Java EE. We are not that crazy.

– Compiler saves huge amount of time
(remember: code generated from data model)

– Old language +1: libraries for everything

– Old language -1: you need to avoid landmines

– OpenJDK

– Hindsight: Java is lesser evil



  

Questions you wanted to ask at the 
beginning

● Self-funded? And still alive?
– Alive and well.

– Bootstrapped (FFF). No venture capital.

– Beginnings were hard. Very hard.

– Persistence pays off.

● Business model?
– Subscription: support + new feature development

– Trainings, PoCs, Architecture reviews

– Professional services, projects (minimal) → partners



  

Summary

● Million lines of Java code, 7 years, small team

… and still going fast and strong.
● Open source, self-funded … and survived!
● Good architecture, rolling-wave design
● Schema-aware from bottom to top
● Not entirely normal project



  

Join the Team

● Java developers, IDM engineers, … marketing

● Bratislava, Košice

... or anywhere (remote work)

● Join the team

… if you are up to the challenge



  



  

For more information please visit
www.evolveum.com
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