

How To Maintain Million Lines
Of Open Source Code

And Remain Sane*

or

The Story of MidPoint

Radovan Semančík
Rubyslava, October 2018

* More or less. More less than more.

Radovan Semančík

Software Architect at Evolveum

Architect of midPoint

Apache Foundation Committer

Contributor to several open source
projects

Still (more or less) sane

WARNING

Controversial statements ahead!
Political correctness (very) limited.
Mental health hazards.
Dogmatic buzzword followers should leave now.

HIC SUNT LEONES

Project midPoint
● Identity management and governance
● Open source (Apache License)

● Started in 2011 by Evolveum (self-funded)

● Approx. 1 million lines of code
● Mostly written in Java

What is Identity Management?

System
admin

Requester
 Approver

Users

Provisioning
system

HR

CRM
Application

Application

 Application

 Application

A
M

Identity
repository

… and Identity Governance?

● Beyond Role-Based Access Control (RBAC)
● Organizational structure
● Delegation, Audit, etc.
● Role assignment and re-certification
● Policies (e.g. SoD)
● Maintenance of role model (role lifecycle)
● Risk assessment
● Compliance

MidPoint Development

● Everything is open source (see github)

● Evolutionary approach (iterative+incremental)

● At least 2 releases per year (26 releases)

● Team of 5 full-time developers (+contributors)

● High development activity (100-200 commits/month)

MidPoint Big Picture

midPoint

Source
systems Identity

conncetors

Target
systems

MidPoint Big Picture

midPoint

Source
systems Identity

conncetors

Target
systems

Monolith? Not really!

MidPoint Architecture

Components, Source Code Structure

Dependencies (2010-2012)

● Spring
● Java Server Faces
● XML (DOM)
● JAX-B
● JAX-WS
● ESB (BPEL)
● Activiti BPM (BPMN.2)
● Jasper Reports
● Hibernate

Dependencies (2018)

● Spring + Spring Boot
● Java Server Faces Apache Wicket
● XML (DOM) + JSON + YAML
● JAX-B : (almost) replaced
● JAX-WS : not used much any more
● ESB (BPEL) : replaced before midPoint started
● Activiti BPM (BPMN.2) : going to be replaced
● Jasper Reports : not very useful, will it survive?
● Hibernate : may be replaced later on

Dependencies : Lessons Learned

● Faster start of the project
● Do not reinvent the wheel

… unless the wheel is in fact a square
● Do not depend on dependencies too much
● Understand how they work – and why they fail
● Have a “Plan B” to replace them later on

Architecture?

“REST”, Microservices, Web frameworks, …

 That’s not architecture!

Architecture!

“REST”, Microservices, Web frameworks, …

 That’s not architecture!

This is architecture

Components, subsystems,
interfaces, modules,
separation of concerns

You really should pay attention in
software engineering classes.

Data Model

● Extremely important
● As important as architecture
● Cross-cutting concern
● Performance, scalability, evolvability, …
● Changes often – especially at the beginning
● Evolution - compatibility
● Experimental features

Data Model

DB

Business Logic

User Interface

Integration

Data Model Change

DB

Business Logic

User Interface

Integration

CHANGE

CHANGE

CHANGE

CHANGE

Data Model : Schema

DB

Business Logic

User Interface

Integration

CHANGE Schema

MidPoint : Prism Schema (now)

DB

Business Logic

User Interface

Integration
XSD++ Prism

Schema

Generated
classesJAXB

parse

MidPoint : Prism Schema (future)

DB

Business Logic

User Interface

IntegrationXSD++
(or whatever)

Prism
Schema

+
Generated

classes

parse

MidPoint : Prism Schema in UI

CUSTOM SCHEMA EXTENSION

XML, JSON, YAML and Friends
Prism Object : UserType

Parser / Serializer
Prism

Schema

name: foo
givenName: Foo
familyName: Bar
fullName: FooBar

{
 “name” : “foo”,
 ”givenName” : “Foo”,
 ”familyName” : “Bar”,
 ”fullName” : “Foo Bar”
}

<user>
 <name>foo</name>
 <givenName>Foo</gi
 <familyName>Bar</fa
 <fullName>Foo Bar</
</user>

Whatever data format
will become fashionable
next year

XML, JSON, YAML and Friends

Prism Deltas

Big Problem of Consistency

midPoint

Source
systems Identity

conncetors

Target
systems

MidPoint
DB

Transactions / MVCC

midPoint

Source
systems Identity

conncetors

Target
systems

MidPoint
DB

YE
S

Transactions / MVCC

midPoint

Source
systems Identity

conncetors

Target
systems

MidPoint
DB

YE
S

Limited

MVCC
(maybe)

Transactions / MVCC

midPoint

Source
systems Identity

conncetors

Target
systems

MidPoint
DB

YE
S

MVCC
(maybe)

Limited

NO

What is a
“transaction”
?

No way!

“Relativistic” Consistency

● Deltas are usually relative (add, delete)
● Apply delta in any order => equivalent value
● We need unordered multi-values for that

… but ordering is seldom needed
● There are still some weak spots (e.g. replace)
● But conflicts are quite unlikely
● “Reconciliation” as safety net

Heureka! It works!

Prism : Much More

● Static schema (compile-time)
● Dynamic schema (run-time)
● “Superdynamic” schema
● Raw data

– We do not have complete schema at parse-time

● Deltas (schema-aware)
● Search filters (schema-aware, of course)
● Lifecycle (versioning, deprecated, experimental)

Questions You Surely Want To Ask

● Why XSD?
– Because midPoint started in 2011

– Because JSON Schema and others are equally bad

● Namespaces? QNames?
– Yes, we use them (even in JSON and YAML)

– No, we are not crazy (yet)

– End user (usually) does not need to deal with them

– QName == URI

– Benefits: extensibility, versioning

RESTful API

● “REST” part and RPC part (and some overlap)

● Full schema support: XML, JSON, YAML
● Big problem of REST: modifications

… but we do not worry, we have deltas
● SOAP to REST in five easy steps

http://…/rest/users/02c15378­c48b­11e7­b010­1ff8606bae23

http://…/rest/users

http://…/rest/tasks/c68d7770­...­9bec1fc3b57c/suspend

http://…/rest/notifyChange

R
E

S
T

(a
lm

os
t)

R
P

C

Testing
● Automated integration testing

– Thousands of test cases

– Still based on unit test framework (TestNG)

– Embed what you can (DB, LDAP server, ...)

● Not that much unit tests
– Are you crazy? Yes … I mean: No!

– Remember: code generated from schema + compiler

– Unit test maintenance is very expensive

● End-to-end tests – in progress
● Test-Driven Bugfixing (TDB)

Designed For (Integration) Testability

Rolling-Wave Approach

2018 2019 2020 2021
v3.9
exact
plan

v4.0
rough
plan

??? v5.0 here
or maybe not

v4.1
some
plan

v4.2
maybe

v4.3
probably

2018 2019 2020 2021
v3.9
done

v4.0
exact
plan

v5.0 here
maybe

v4.1
rough
plan

v4.2
some
plan

v4.3
most
likely

2018 2019 2020 2021
v3.9
done

v4.0
done

v5.0
probably

v4.1
exact
plan

v4.2
rough
plan

v4.3
some
plan

v4.4
maybe

Rolling-Wave Approach

● Rolling-wave planning: obvious and intuitive
● Rolling-wave approach applied to everything:

– architecture, schema, features, release scope

● Create architecture that can survive decades
– But do NOT implement everything

– Implement only what you need now

● Design 1-3 years ahead
– But do NOT implement what you don’t need now

– Data model (schema), DB model, interfaces

● Implement only what you need

Questions you wanted to ask at the
beginning

● Java? Really?
– Really. And we use checked exceptions!

– But no Java EE. We are not that crazy.

– Compiler saves huge amount of time
(remember: code generated from data model)

– Old language +1: libraries for everything

– Old language -1: you need to avoid landmines

– OpenJDK

– Hindsight: Java is lesser evil

Questions you wanted to ask at the
beginning

● Self-funded? And still alive?
– Alive and well.

– Bootstrapped (FFF). No venture capital.

– Beginnings were hard. Very hard.

– Persistence pays off.

● Business model?
– Subscription: support + new feature development

– Trainings, PoCs, Architecture reviews

– Professional services, projects (minimal) → partners

Summary

● Million lines of Java code, 7 years, small team

… and still going fast and strong.
● Open source, self-funded … and survived!
● Good architecture, rolling-wave design
● Schema-aware from bottom to top
● Not entirely normal project

Join the Team

● Java developers, IDM engineers, … marketing

● Bratislava, Košice

... or anywhere (remote work)

● Join the team

… if you are up to the challenge

For more information please visit
www.evolveum.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

