Evolveum

Fighting Software
Maintainability Nightmares

Radovan Semancik

Lecture at Technical University of KoSice
March 2019



Radovan Semancik

Software Architect at Evolveum .
Architect of midPoint
Apache Foundation Committer

Contributor to several open source
projects

Evelveum



Software Maintainabllity

So, you have written your little software today
... that’s nice

Little software will grow and IrOW and g r'Ow

Because software Is nhever done
Software must change, adapt, evolve
Can you keep your software alive?
For a year? Or 5 years? Or 10 years?



Software Maintainabllity
Nightmare

* The day when your software Is deployed is the
first day of its life span, not the last one.

* It is hard to write the software. To make it run.
* It is much harder to keep it running.



Waterfall Model

Analysis

Design
Implementation

Validation

Operation




Waterfall Model

DOES NOT WORK
High voltage!

N\

x Danger!!!

N

A DO NOT USE

Beware of the Leopard Evelveum



Iterative Models

ﬁ Design w

Analysis

Iteration
(S

Deployment

Operation )

* Works (much) better ... because it works at all

Implementation

Validation

* But world will not stop changing after deployment



Reality

Iterations turn for ever and ever

-0.1.2-1.03-12-20-2.01-21-2



Software Maintainabllity
Nightmare

Correctness

- Do the same thing, do it right (bugfixes)

Security

- Do the same thing, but securely (security updates)
Adaptation

- Do the same thing, but in a changed world

Continuity

- Do the same thing, but in new version (upgrades, retention)
Evolution

— Do more and better things (new features)



eSS
20 the same thing, G
ecurity

- Do the same thing, but .

Adaptation

- Do the same thing, but

ontinuity
Y0 the same thing, r
'qn

... It takes all the
running you can
do, to keep In the
same place.

— Red Queen



Who are you anyway?
How dare you talk like this?



Project midPoint

* |ldentity management and governance
* Open source (Apache License)

e Started in 2011 by Evolveum (self-funded)
* Approx. 1 million lines of code

* Mostly written in Java

D



What Is ldentity Management?

System Requester
admin Approver

,i\ /i\,i\ I Applicatio]
Provisioning Vag Apphcatloni
system

Identity <
rep05|tory

Application
Application

Users

=)o =m)e =)o =me =)o
=)o =)o =)o =)

Evelveum



... and ldentity Governance?

Beyond Role-Based Access Control (RBAC)
Organizational structure

Delegation, Audit, etc.

Role assignment and re-certification

Policies (e.g. SoD)

Maintenance of role model (role lifecycle)
Risk assessment

Compliance



midpﬂint = Organization tree : administrator

SELF SERVICE

Evolveum Projects Role Catalog
@& Home

& Profile Org. hierarchy o Managers a

. =3 Evel T "
U Credentials i Evlvaum Mgr. Igor Farini€ (ifarinic) v Enabled [
El+=JResearch and Development CEO B vanager
[# Requestarole Division u
=3 Development Section
ADMINISTRATION y
£1453 QA Section
@ Dashboard O Sariis seten Members
& Users < =147 Business Division
One level j Object j
=9 Marketing Section
Fl  org. structure v .
El'ﬁhccountlng on Mame: All More... - E Advanced
O Organization tree
A el O Type “ Name Fullname/Display name Identifier/Description E+ )
< 3
3 Rl [ E F1100 Research and Development Division 1100
i < . —
S Svice M B F1200 Business Division 1200
< oo : ;
€ Resources M - ifarinic Mgr. Igor Farinic igorfarinic@evolveum.com
& workitems I
< H 1to30f3 | =< | < > | = | [
# Certification <
= Servertasks <
@& Reports <
## Configuration ¢

Evelveum



midPGint Edlt user lkatkavl administrator

SELF SERVICE

Ing. Katarina Valalikova (katkav) + Enabled
& Home Software Developer & End user
Development Section B Manager
& Profile )
U cCredentials Basic Projections o Assignments o Tasks o Request a role History Delegations Delegated to me o
[# Requestarole Properties T
ADMINISTRATION
Name * katkaw
Dashboard
& Full name Ing. Katarina Valalikova
& Users ¥ Given name Katarina
B Family name Valalikova
O Edituser
Honorific Prefix Ing.
O MNew user
Title Softw Dy 1
[ org. structure ¢ are Heveloper
Email Address katarika.valalikova@evolveum.com
4 Roles <
Employee Number 003
& Services <
Locality Bratislava
£ Resources < _ :
Jpeg photo | Browse... | No file selected. X W
Q workitems B
# Certification < Activation
- Lock-out Status Normal Setto "Normal”
= Servertasks <
i
& Reports < Password

£ cConfiguration < Password password is set

Metadata

Create timestamp May 9,2016 10:16:07 AM



USERS
14 enabled

16 total

SERVICES
0 enabled

0 total

Resource details

ORGANIZATIONAL UNITS
19 enabled

19 total

RESOURCES
Tup

SELF SERVICE

& Home

& Profile

U Ccredentials

[# Requestarole
ADMINISTRATION

@& Dashboard

OpenLDAP

Details Defined Tasks Accounts Entitlements

RESOURCE IS UP
LdapConnector

143

Generics

Uncategorized Connector

MAPPINGS
Source and Target

SCHEMA

& 3 object types

Synchronization defined o
79 schema definitions

up

Capabilities
& Users P
[ Org. structure < a a a &, <>

Activation ] Activation Activation Credentials Script
Status Validity
A Roles <
& services < 4 =
v Update Delete Count Objects Paged Search
Object C|

E Resources ~
O List resources
O Viewresource Kind Object Class Intent Synchronization Tasks
=) e ACCOUNT inetOrgPerson true
O Impeort resource definition

ENTITLEMENT groupOfiames IdapGroup true
O List connector hosts

ENTITLEMENT posixGroup posixGroup true
& workitems

o 1to3ef3 == " -

# Certification <
= Servertasks <

R

Back Test connection Refresh schema Edit configuration

Show using wizard Edit using wizard Edit XML

ROLES

37 enabled

 total (+ 1 archived)

TA
3 active

Stage: Line managers (1/3) «*

Approver: lechuck  «F

Performer: administrator

Stage: Security (2/3) @

[ Approver: barkeeper {Z}]

[ Approver: elaine G}]

l

Stage: Role approvers (all) (3/3) @

[ Approver: cheese B]

&

[- Approver: chef ﬂ]

Evelveum’



Evolveum



MidPoint Development

* Everything IS open source (see github)

* Evolutionary approach (iterative+incremental)

* At least 2 releases per year (26 releases)

* Team of 5 full-time developers (+contributors)

* High development activity (100-200 commits/month)



Let’s get back to technology ...

WARNING

HIC SUNT LEONES

Controversial statements ahead!

Political correctness (very) limited.

Mental health hazards.

Dogmatic buzzword followers may be disturbed.



MidPoint Big Picture

Target
systems

midPoint

T

Source
systems

;
i

e N
t
4 e

W
R <l !
a1 24N

t
H

ldentity
conncetors

Evelveum



MidPoint Big Picture

Target
systems

midPoint

T

Source
systems

!
i

N

4 -
t

W
8 )
a1 L

r
!

ldentity
conncetors

Monolith? Not really!

Evolveum



¢ MidPoint Architecture

User
A
\
A
N
<<subsystem=>=> g]
Responsibility: SR 2
Interaction with user
{any type of user:
admin, end user, ...)
I
]
1 -
! -
IDM Model Web Service -7

Process Hoo‘ks Interface

<<subsystem>>
DM Model Subsystemn

Responsibility:

Implementing business logic, automatic assignment of roles and
attributes, iniciating approvals and interaction, notifications, passing
data to other workflow systems, etc.

Reaction to changes regardless of the source,

Business logic is "optional" in a
sense that the very simples
implementation may not include it.

Custom Business Logic

g1

Responsibility:

Enforcing IDM model, user-to-
account attribute mapping,
computing role attribute wvalues,
virtual attributes, etc.

(RBAC, RUBAC, ABAC, ....)

IEM Model is a boundary. AN
The high-level components

should not communicate

High-lewvel
components

t

Provisionin? Interface

with low-level component
directly (except for infra).

Change Notification Interface

Low-level
components

Responsibility:

Identity Repository Interface

<=subsystem==

Prowvisioning (carry out modifications of accounts on resources), reading
resource state including transport of change notifications, maintaining
local account cache (account index) and change gueues

Provisioning Subsystem

<<subsystem>>

Repository Subsystem Responsiblity:

Task managerment

Storing (extensible) identity objects, e.g. users, roles, accounts, ...
Storing extensible generic objects.
Provide durability, atomicity and weak consistency

depend on this (not shown here)

Most of other subsystems b}

=<=subsystem==
Infrastructure Subsystem

Application ‘\\

These services are generic, re-usable, statless and
independent from the rest of the system. Usualy other open
source libraries will be here.

Responsibility:
Maintain common data model
Provide a "platform": basic set of libraries and low-lewvel

services such as logging, tracing, dependency injection, ...

Application

Application

Application



Components, Source Code Structure

w | Jinfra
b [ common

b [ maven
b [ prism
', rism'ma‘l}'en' IU in GALLUUNIL dLLl IULE TTIDRIRIT Iy,
-p piug | | cormputing role attribute values,
} [Wischema <<subsystem== 2| virtual attributes, etc,
» [ schema-pure-jaxb IDM Model Subsystem (RBAC, RUBAC, ABAC, ....)
» [ target ) | —
b [ test-util
P [ util X D,
u 1 |
P i ws-util : : Change Notification Interface
b [ maven Lol e __=_
:_ ________ ! o >O Re:
¥ | model | Prowsmnln? Interface Pre
b [ certification-api : res
b [ certification-impl ; o g1 log
Provisioning Subsystem
b [ maven :
o R s
» s model-client Identity Repository Interface -
} [ model-common
b [ model-impl <<subsystem=>=
. Repository Subsystem Responsiblity:
b .
i model-intest Storing (extensible) identity objects, e.g. users, roles, account
b [ model-test Storing extensible generic objects.

» [ notifications Prondde duorahilig . atomicity and wealk congistency

b [ notifications-api
» [ notifications-impl
b [Ereport-api

P [Ereport-impl

b [Etarget

b [ workflow-api

b [ workFlow-impl E“E}Iveum

} [ provisioning



What you want to know but
you are too afraid to ask

e Java? Really?

- Really. And we use checked exceptions!
- But no Java EE. We are not that crazy.

— Compiler saves huge amount of time
(you will see later: generated code)

- Old language +1: libraries for everything

- Old language -1: you need to avoid landmines
- OpendDK

- Hindsight: Java is lesser evil



Dependencies (2010-2012)

* Spring

* Java Server Faces

« XML (DOM)

 JAX-B

« JAX-WS

« ESB (BPEL)

* Activiti BPM (BPMN.2)
* Jasper Reports

* Hibernate



Dependencies (2018)

* Spring + Spring Boot

» Java=Serveraces— Apache Wicket
« XML (DOM) + JSON + YAML

« JAKB-: (almost) replaced
 JAX-WE&-.. Not used much any more

- ESBIBEHS— replaced before midPoint started
* Actit-BRM(BRPMN.2) : being replaced right now

* Jasper Reports : not t
* Hibernate : may be re

nat useful, will 1t survive?
nlaced later on

Evolveum



Dependencies : Lessons Learned

Faster start of the project
Do not reinvent the wheel

... unless the wheel Is In fact a square

DO not depend on depenc

encies too much

Understand how they wor

K — and why they fall

lave a “Plan B” to replace them later on



Architecture?

“REST”, Microservices, Web frameworks, ...
That’s not architecture!



Architecture!

“REST”, Microservices, Web framework

S, ...

That’s not architecture!

User |
\ Responsibility:
Implementing business logic, automatic assignment of roles and
G g attributes, iniclating approvals and interaction, notifications, passing
GUI Subsyster data to other workflow systems, etc
Responsibilty: Reaction to changes regardiess of the source.

Interaction with user

(any type of user:

admin, end user,

)

This 1s architecture

account attr

lodel Subsystem (RBAC, RuB/

Responsibilty:
ooics Interface  |ENforcing IDM model, user-to-

computing role attribute values,
bsystem>> g virtual attributes, etc

Custom Business Logc  &] [Business logic is "optional in a
sense that the very simples
implementation may not include it.

ribute mapping,

IDM Model is a boundary. ™
[The high-level components
shouid not communicate

AC, ABAC, ....)

Chang:

Proviswonm? Interface

ith low-level component
directly (except for infra)

e Notification Interface

High-level T
components

Low-level
components

Responsibilty:

Components, subsystems

<<subs)

Provisioning Subsystem

ystem>>

Provisioning (carry out modifications of accounts on resources), reading
resource state including transport of change notifications, maintaining
local account cache (account index) and change queues

Interfaces, modules, e D

Reposttory Subsystem [Responsibity:
Storing (extensible) identity object:
Storing extensible generic objects.

s, .g. Users, roles, accounts,

Provide durabilty, atomicity and weak consistency Application

separation of concerns o

[Most of other subsystems >
depend on this (not shown here) el

]
==

These services are generic, re-usable, statless and
independent from the rest of the system. Usualy other open
source libraries will be here

[Responsibilty:

Maintain common data model

Provide a "platform" basic set of libraries and low-level
services such as logging, tracing, dependency injection,

You really should pay attention in
software engineering classes.

Application

"\, Application

Application



How Does This Architecture Help
With Maintainabllity?

* Component encapsulation (cohesion, coupling)
- Limited impact of changes
- ... and changes will happen
* Interfaces = abstraction
— Controlling how far changes can “spread”
- Compatibility
* Modularity

- Changing components (implementation) without
Impacting other components



Data Model

Extremely important

As Important as architecture

Cross-cutting concern

Performance, scalability, evolvabillity, ...
Changes often — especially at the beginning
Evolution - compatibility

Experimental features



Data Model

User Interface

Integration
I

Business Logic

Evolveum



Data Model Change

=

User Interface

Integration

m Business Logic



Data Model : Schema

Schema J ..................

— » User Interface

----------------------------------------------------- > Integration

- » Business Logic

|

=



MidPoint : Prism Schema (now)

|||||||||||||||||||||||||||||||||||||||||||||||

-3 User Interface
Prism gromgmmm—— Integration
Schema : |
Generated ~ %™ » Business Logic
classes =

EEAE



MidPoint : Prism Schema (future)

-3 UJser Interface
Prism
XSD++  parse Schema B > |ntegration
(or whatever) " - + e |
_— Generated |
classes :
- Business Logic




MidPoint : Prism Schema in UI

Foo Bar + Enabled
[fOG:] & End user

X Mo organizations

Basic Projections o Assignments o History Tasks Personas Delegations Delegated to me
~ Properties * |
Name* @ foo

Full name @

Foo Bar
Given name @ Foo
Family name @ Bar

55N 1234567890 CUSTOM SCHEMA EXTENSION

Show empty fields

« Activation o I

Lock-out Status Mormal

i



Questions You Surely
Want To Ask

* Why XML and XSD? That’s not cool any more!

- Because midPoint started in 2011

- Because JSON is not much better than XML
... and YAML Is even worse

- Because JSON Schema and others are equally bad

- New technology does not mean better technology
(except when it does)

- Anyway, we are reaching limits of XML/XSD
likely change In the future



XML, JSON, YAML and Friends

Prism Object : UserType

name: foo
givenName: Foo
familyName: Bar
fullName: FooBar

2 T KX

Prism .
-------- - Parser / Serializer
Schema
<user> {
<n§1me>foo</name>_ ”ngme : foc?,.,“ ) Whatever data format
<givenName>Foo</gi givenName” : “Foo”, : .

- P e i e will become fashionable
<familyName>Bar</fa familyName” : “Bar”, next vear
<fullName>Foo Bar</ "fullName” : “Foo Bar” y

</user> 1} | |




XML, JSON, YAML and Friends

4

4

4

o = T Y Y Iy X R

= S e e

[0 O = Y I N = - Y = - ]

ey
d o

[- I
4

[
Y]
4

4

4

= LR T S Y N T - ]

4

4

4

Bt = R VN S W S S - Y ]

e g g b L L L L L L Ll Ll Lad P P P Pad Pad Pd I P B B

Wt [ = 0D WD oD

JSON  YAML

=user xmlns="http://midpoint.evolveum.com/xml/ns/public/common/common-3" xmlns:c="http://midpoint.evolveum. com/xml/ns/public/common/common-3" xmlns:icfs="http
=zname=foo=/name=
<extension xmlns:genl65="http://midpoint.evolveunm.com/xml/ns/samples/extension-3"=
<genl6s:ssn>1234567898< /genl65 550>
< fextension=

metadata=
<requestTimesta
XML

<requestorfef o 150N YAML
zcreateTimestamy
<creatorRef oid4
=createChannel=H
<modifyTimestamy
<modifierRef oid 1|1 i i i
<modifyChannelsH 2 “@ns” : "http://midpoint.evolveum.com/=ml/ns/public/common/common-3°,
<lastProvisionid 3 “user” : {
</metadata= - “"oid” : "fcdlbc2d-6fB1-45f3-a3103-6e05741FhER2",
<pperationExecution 5 "wersion” : "26",
<timestamp>2818 f "name” : "foo”,
<operation> T “extension” : {
.'I}bJE-Ci:DE.Lt B “@ns“ . “http:ffﬂidp‘ﬂi. XML JSOM YAML
<tichang 9 "ssn” : "1234567898"
<t:obje 19 1
</objectDel o, "
. 11 metadata™ : {
<executionh 12 "requestTimestamp™ : " i [--
: i H
<operat 13 " . 2 | '@ns": "http://midpoint.evolveum.com/xml/ns/public/common/common-3"
estatus 3 requestorRef”™ : { |-
. 14 "oid” : "06006600-0H - :
. ntok?nn - "relation” : "http: 4 oid: "fcdlbc?d-6fB1-45f3-a183-6e085741FbaA2"
< /executionH = relatien - p:/f - A
. - .-, o= : 5 version: "26
<pbjectNames 16 type” : “http://mid s
¥ . = 6 name: "foo
<foperations 17 1. - :
<operations 18 “createTimestamp” : "2 ' extension: , ,
<objectDelt 19 "creatorftef® : | B "@ns': “http://midpoint.evolveum.comf/xml/ns/samples/extension-3"
<t:chang 28 "aid” : "BEBAREER-00! E ssn: "1234567806
<t:obje 21 =relation” : “http:/ 18 metadata:
</objectDel —— - . L oy : 11 requestTimestamp: "2017-12-15T89:48:35.277Z"7
22 type™ : “http://mid N
cevecutionh 23 } 12 requestorfef:
<operati ﬁ; 'Ereate{hannel' . "htt 13 old: "OE000606-6000-0006- 0006 -AOGGRRBEEAE27
<status f: *modiFyTimestan .. "3 14 relation: "http://midpoint.evolveun.com/xml/ns/public/common/org-3#default”
<tokens j; _nud,F¥ Ref" .p{ ' 15 type: "http://midpoint.evolveum.com/xml/ns/public/common/common- 3#lserType”
</execution - ° ?d‘;ef S 16 createTimestamp: "2017-12-15T89:48:37.4822"
<objectName - owd” : "63036000-0 17 creatorRef:
e - c m o om
<resource0i i .EELE‘E“_’",h;t 'jtt”.:j 18 old: "BAABBRRE-DRRR-BOO0-DOGE - HOGGERRRARAED"
<resourcela = o type o p://mi | 19 relation: “http://midpoint.evolveum.com/xml/ns/public/common/org-3¢default”




How Does This Schema Thing Help
With Maintainability?

* Evolution of data model is easy

- Change schema - everything else adapts
- Easy to add new features

* Compatibility control
- Incompatible change — compilation goes *
* Easy adaptation to environment

- If some FooML becomes fashionable next year, we
can easily support that



RESTTful Interface

http://../rest/users
http://../rest/users/02c15378-c48b-11e7-b010-1ff8606hae23
http://../rest/tasks/c68d7770-...-9beclfc3b57c/suspend

http://../rest/notifyChange

(almost)

RPC REST

 “REST” part and RPC part (and some overlap)
* Full schema support: XML, JSON, YAML
e Big problem of REST. modifications
... but we do not worry, we have deltas
« SOAP to REST In five easy steps

See my lecture on midPoint REST for all the details (Nov 2017) Evaiveum



How Does REST API Help With
Maintainability?

* |It's not really REST API, it is a REST-Inspired
Interface ... but don't let me get started on this

* Third-party extensions of the system

— You cannot predict all possible use-cases
- Other people will add functionality, integrate, ...

e ItIs an interface

- Implementation may be different, but RESTful
iInterface will stay compatible

- |solate outside of the system and inside of the
system



Testing

* Automated integration testing

- Thousands of test cases

— Still based on unit test framework (TestNG)

- Embed what you can (DB, LDAP server, ...)
* Not that much unit tests

- Are you crazy? Yes, we are ... | mean: No!
- Remember: code generated from schema + compiler
— Unit test maintenance IS very expensive

* End-to-end tests — In progress
* Test-Driven Bugfixing (TDB)



Designed For (Integration) Testability

User
A}
Y Responsibility:
N Implementing business logic, automatic assignment of roles and
<<subsystem=> E gttributes, iniclating approvals and interaction, notifications, passing
__ GUI Subsystem ata tlo other worlkflow systems, etc.
Responsibility: Reaction to changes regardless of the source.
Interaction with user
(any type of user:
admin, end user, ...) Custom Business Logic ] Business logic is "optional” in a
I sense that the very simples
: _ implermentation may not include it
1 - - _ - -
Model Web Service -7
Responsibility:
Process Hooks Interface Enforcing lD,M madel, ufser—to—
account attribute mapping,
= 5] computing role attribute values,
<<subsystem=>= virtual attributes, etc. IDM Model is a boundary. 0N High-level
IDM Mocel Subsystem (RBAC, RUBAC, ABAC, ....) The high-level components co?’nponents
should not communicate
with low-level component
directly (except for infra). Low-level
components

Change Notification Interface

Responsibility:

Prowvisioning (carry out modifications of accounts on resources), reading

resource state including transport of change notifications, maintaining
<<subsystem=>= E local account cache (account index) and change queues

Frowvisioning Subsystem

ovisionin? Interface

Repository Interface

<<=subsystem==
Repository Subsystem Responsiblity: Application
Storing (extensible) identity objects, e.g. users, roles, accounts, ... AN
Storing extensible generic objects. ~— . ~—
Provide durability, atomicity and weak consistency Application *. Application
Task management N
Application
<<subsystem>> 2
Maost of other subsysterms
depend on this (not shown here) j Infrastructure Subsystem -

These services are generic, re-usable, statless and % |Respomsibi\ity: %



How Can Testing Ever Help With
Maintainability?

* Automated testing is absolutely crucial!

* Continuous “Integration”

— You cannot retest everything manually after each
commit. But Jenkins can!

* You cannot do serious refactoring without good
automated tests

- If you cannot refactor you will drown in your own
garbage (much sooner than you think)



Rolling-Wave Approach

018 2019 2020 2021
v3.9 v4.0 v4.l v4.2 v4.3 27?2 v5.0 here
exact rough | some maybe probably | or maybe not
plan plan  plan
2019 2020 2021
4.0 v4.1 v4.2 v4.3 v5.0 here
xact | rough some most maybe
plan | plan plan likely
2020 2021
v4.2 v4.3 v4.4 v5.0
rough = some maybe probably
plan plan

Evelveum




Rolling-Wave Approach

Rolling-wave planning: obvious and intuitive
Rolling-wave approach applied to everything:

— architecture, schema, features, release scope
Create architecture that can survive decades

- But do NOT implement everything
- Implement only what you need now

Design 1-3 years ahead

— But do NOT implement what you don’t need now
- Data model (schema), DB model, interfaces

Implement only what you need



How Can Such Evolutionary
Approach Help With Maintainabllity?

e Design early - less rework later

- It Is easy to change the design any time before the
Implementation starts

* Design only, do not implement!

- If you implement early, you will have too much to
maintain and rework

* Do not be afraid to change the plans
- Only bad plan cannot be changed
 \We are Evolveum after all!




Questions you wanted to ask at
the beginning  agr

e Self-funded? And still alive?
- Alive and well.

- Bootstrapped (FFF). No venture capital.‘
- Beginnings were hard. Very hard.
- Persistence pays off.

e Business model?

— Subscription: support + new feature development
- Trainings, PoCs, Architecture reviews
- Professional services, projects (minimal) - partners

Evolveum



Join the Team

* Java developers, IDM engineers, ...

 Kosice, Bratislava
... or anywhere (remote work)

e Join the team
... If you are up to the challenge



Summary

Software Is never done

- ... It takes all the running you can do, to keep in the
same place

Design the software for maintainabllity

- Components, interfaces, mechanisms, testing
Do not rely on tech trends too much

— A That's it's all just a little bit of history repeating
Don’t give up, evolve!



Summary

Inspiration

perspiration

Evelveum’



Identity Management
Synchronization Organizational Structure

Self-service Governance RBAC LDAP
Approvalimpott SoD Data Protection

Notifications Recertification



For more information please visit
Www.evolveum.com




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

