
  

Fighting Software
Maintainability Nightmares

Radovan Semančík
Lecture at Technical University of Košice

March 2019



  

Radovan Semančík

Software Architect at Evolveum

Architect of midPoint

Apache Foundation Committer

Contributor to several open source 
projects



  

Software Maintainability

● So, you have written your little software today

… that’s nice

● Little software will grow and grow and grow
● Because software is never done
● Software must change, adapt, evolve
● Can you keep your software alive?
● For a year? Or 5 years? Or 10 years?



  

Software Maintainability
Nightmare

● The day when your software is deployed is the 
first day of its life span, not the last one.

● It is hard to write the software. To make it run.
● It is much harder to keep it running.



  

Waterfall Model

Analysis

Design

Implementation

Operation

Validation

W W’W ≠ W’



  

Analysis

Design

Implementation

Operation

Validation

DOES NOT WORK

DO NOT USE
Beware of the Leopard

High voltage!

Danger!!!

Waterfall Model



  

Iterative Models

Analysis

Design

Implementation

Operation

Iteration

Validation

● Works (much) better … because it works at all
● But world will not stop changing after deployment

Deployment



  

Reality

Iterations turn for ever and ever

→0.0.3→0.1.2→1.0.3→1.2→2.0→2.0.1→2.1→2.2 



  

Software Maintainability
Nightmare

● Correctness
– Do the same thing, do it right (bugfixes)

● Security
– Do the same thing, but securely (security updates)

● Adaptation
– Do the same thing, but in a changed world

● Continuity
– Do the same thing, but in new version (upgrades, retention)

● Evolution
– Do more and better things (new features)



  

Software Maintainability
Nightmare

● Correctness
– Do the same thing, do it right (bugfixes)

● Security
– Do the same thing, but securely (security updates)

● Adaptation
– Do the same thing, but in a changed world

● Continuity
– Do the same thing, but in new version (upgrades, retention)

● Evolution
– Do more and better things (new features)

… it takes all the 
running you can 
do, to keep in the 
same place.

– Red Queen



  

Who are you anyway?
How dare you talk like this?



  

Project midPoint
● Identity management and governance
● Open source (Apache License)

● Started in 2011 by Evolveum (self-funded)

● Approx. 1 million lines of code
● Mostly written in Java



  

What is Identity Management?

System 
admin

Requester  
 Approver

Users

Provisioning 
system

HR

CRM
Application

Application

 Application

 Application

A 
M

Identity 
repository



  

… and Identity Governance?

● Beyond Role-Based Access Control (RBAC)
● Organizational structure
● Delegation, Audit, etc.
● Role assignment and re-certification
● Policies (e.g. SoD)
● Maintenance of role model (role lifecycle)
● Risk assessment
● Compliance



  



  



  



  



  

MidPoint Development

● Everything is open source (see github)

● Evolutionary approach (iterative+incremental)

● At least 2 releases per year (26 releases)

● Team of 5 full-time developers (+contributors)

● High development activity (100-200 commits/month)



  

Let’s get back to technology ...

Controversial statements ahead!
Political correctness (very) limited.
Mental health hazards.
Dogmatic buzzword followers may be disturbed.

HIC SUNT LEONES

WARNING



  

MidPoint Big Picture

midPoint

Source 
systems Identity 

conncetors

Target 
systems



  

MidPoint Big Picture

midPoint

Source 
systems Identity 

conncetors

Target 
systems

Monolith? Not really!



  

MidPoint Architecture



  

Components, Source Code Structure



  

What you want to know but
you are too afraid to ask

● Java? Really?
– Really. And we use checked exceptions!
– But no Java EE. We are not that crazy.
– Compiler saves huge amount of time

(you will see later: generated code)
– Old language +1: libraries for everything
– Old language -1: you need to avoid landmines
– OpenJDK
– Hindsight: Java is lesser evil

?



  

Dependencies (2010-2012)

● Spring
● Java Server Faces
● XML (DOM)
● JAX-B
● JAX-WS
● ESB (BPEL)
● Activiti BPM (BPMN.2)
● Jasper Reports
● Hibernate



  

Dependencies (2018)

● Spring + Spring Boot
● Java Server Faces   Apache Wicket
● XML (DOM) + JSON + YAML
● JAX-B  : (almost) replaced
● JAX-WS  : not used much any more
● ESB (BPEL)   : replaced before midPoint started
● Activiti BPM (BPMN.2)  : being replaced right now
● Jasper Reports : not that useful, will it survive?
● Hibernate : may be replaced later on



  

Dependencies : Lessons Learned

● Faster start of the project
● Do not reinvent the wheel

… unless the wheel is in fact a square
● Do not depend on dependencies too much
● Understand how they work – and why they fail
● Have a “Plan B” to replace them later on



  

Architecture?

“REST”, Microservices, Web frameworks, …

                     That’s not architecture!



  

Architecture!

“REST”, Microservices, Web frameworks, …

                     That’s not architecture!

This is architecture

Components, subsystems, 
interfaces, modules,
separation of concerns

You really should pay attention in 
software engineering classes.



  

How Does This Architecture Help 
With Maintainability?

● Component encapsulation (cohesion, coupling)
– Limited impact of changes
– … and changes will happen

● Interfaces = abstraction
– Controlling how far changes can “spread”
– Compatibility

● Modularity
– Changing components (implementation) without 

impacting other components



  

Data Model

● Extremely important
● As important as architecture
● Cross-cutting concern
● Performance, scalability, evolvability, …
● Changes often – especially at the beginning
● Evolution - compatibility
● Experimental features



  

Data Model

DB

Business Logic

User Interface

Integration



  

Data Model Change

DB

Business Logic

User Interface

Integration

CHANGE

CHANGE

CHANGE

CHANGE



  

Data Model : Schema

DB

Business Logic

User Interface

Integration

CHANGE Schema



  

MidPoint : Prism Schema (now)

DB

Business Logic

User Interface

Integration
XSD++ Prism

Schema

Generated
classesJAXB

parse



  

MidPoint : Prism Schema (future)

DB

Business Logic

User Interface

IntegrationXSD++
(or whatever)

Prism
Schema

+
Generated

classes

parse



  

MidPoint : Prism Schema in UI

CUSTOM SCHEMA EXTENSION



  

Questions You Surely
Want To Ask

● Why XML and XSD? That’s not cool any more!
– Because midPoint started in 2011
– Because JSON is not much better than XML

… and YAML is even worse
– Because JSON Schema and others are equally bad
– New technology does not mean better technology

(except when it does)
– Anyway, we are reaching limits of XML/XSD

likely change in the future

?



  

XML, JSON, YAML and Friends
Prism Object : UserType

Parser / Serializer
Prism

Schema

name: foo
givenName: Foo
familyName: Bar
fullName: FooBar

{
    “name” : “foo”,
    ”givenName” : “Foo”,
    ”familyName” : “Bar”,
    ”fullName” : “Foo Bar”
}

<user>
    <name>foo</name>
    <givenName>Foo</gi
    <familyName>Bar</fa
    <fullName>Foo Bar</
</user>

Whatever data format
will become fashionable
next year



  

XML, JSON, YAML and Friends



  

How Does This Schema Thing Help 
With Maintainability?

● Evolution of data model is easy
– Change schema → everything else adapts
– Easy to add new features

● Compatibility control
– Incompatible change → compilation goes 

● Easy adaptation to environment
– If some FooML becomes fashionable next year, we 

can easily support that

BOOM



  

RESTful Interface

● “REST” part and RPC part (and some overlap)

● Full schema support: XML, JSON, YAML
● Big problem of REST: modifications

… but we do not worry, we have deltas
● SOAP to REST in five easy steps

http://…/rest/users/02c15378-c48b-11e7-b010-1ff8606bae23

http://…/rest/users

http://…/rest/tasks/c68d7770-...-9bec1fc3b57c/suspend

http://…/rest/notifyChange

R
E

S
T

(a
lm

os
t)

R
P

C

See my lecture on midPoint REST for all the details (Nov 2017)



  

How Does REST API Help With 
Maintainability?

● It’s not really REST API, it is a REST-inspired 
interface … but don’t let me get started on this

● Third-party extensions of the system
– You cannot predict all possible use-cases
– Other people will add functionality, integrate, …

● It is an interface
– Implementation may be different, but RESTful 

interface will stay compatible
– Isolate outside of the system and inside of the 

system



  

Testing
● Automated integration testing

– Thousands of test cases
– Still based on unit test framework (TestNG)
– Embed what you can (DB, LDAP server, ...)

● Not that much unit tests
– Are you crazy? Yes, we are … I mean: No!
– Remember: code generated from schema + compiler
– Unit test maintenance is very expensive

● End-to-end tests – in progress
● Test-Driven Bugfixing (TDB)



  

Designed For (Integration) Testability



  

How Can Testing Ever Help With 
Maintainability?

● Automated testing is absolutely crucial!
● Continuous “Integration”

– You cannot retest everything manually after each 
commit. But Jenkins can!

● You cannot do serious refactoring without good 
automated tests
– If you cannot refactor you will drown in your own 

garbage (much sooner than you think)



  

Rolling-Wave Approach

2018 2019 2020 2021
v3.9
exact
plan

v4.0
rough
plan

??? v5.0 here
or maybe not

v4.1
some
plan

v4.2
maybe

v4.3
probably

2018 2019 2020 2021
v3.9
done

v4.0
exact
plan

v5.0 here
maybe

v4.1
rough
plan

v4.2
some
plan

v4.3
most
likely

2018 2019 2020 2021
v3.9
done

v4.0
done

v5.0
probably

v4.1
exact
plan

v4.2
rough
plan

v4.3
some
plan

v4.4
maybe



  

Rolling-Wave Approach

● Rolling-wave planning: obvious and intuitive
● Rolling-wave approach applied to everything:

– architecture, schema, features, release scope
● Create architecture that can survive decades

– But do NOT implement everything
– Implement only what you need now

● Design 1-3 years ahead
– But do NOT implement what you don’t need now
– Data model (schema), DB model, interfaces

● Implement only what you need



  

How Can Such Evolutionary 
Approach Help With Maintainability?
● Design early → less rework later

– It is easy to change the design any time before the 
implementation starts

● Design only, do not implement!
– If you implement early, you will have too much to 

maintain and rework
● Do not be afraid to change the plans

– Only bad plan cannot be changed
● We are Evolveum after all!



  

Questions you wanted to ask at 
the beginning            

● Self-funded? And still alive?
– Alive and well.
– Bootstrapped (FFF). No venture capital.
– Beginnings were hard. Very hard.
– Persistence pays off.

● Business model?
– Subscription: support + new feature development
– Trainings, PoCs, Architecture reviews
– Professional services, projects (minimal) → partners

?



  

Join the Team

● Java developers, IDM engineers, …

● Košice, Bratislava

... or anywhere (remote work)

● Join the team

… if you are up to the challenge



  

Summary
● Software is never done

– … it takes all the running you can do, to keep in the 
same place

● Design the software for maintainability
– Components, interfaces, mechanisms, testing

● Do not rely on tech trends too much
– ♫ That's it's all just a little bit of history repeating ♬

● Don’t give up, evolve!



  

Summary

inspiration

perspiration



  



  

For more information please visit
www.evolveum.com


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

